Name of the project	Investigation of thermonhygical properties and structural
Name of the project	investigation of merinophysical properties and structural-
	phase states of organic substances at low temperatures (80-
	300 K)
Relevance	In the message to the people of Kazakhstan "Kazakhstan's
Kelevance	In the message to the people of Kazakhstan Kazakhstan s
	way-2050: a single goal, a single interest, a single future"
	the President of the country noted: Development of new
	knowledge and technologies is the main way to increase
	Knowledge and technologies is the main way to increase
	the potential of the country. The development of new
	knowledge and technologies is the main way to increase
	the country's potential. Deep knowledge of the laws of
	nature and their use for human needs in technology and in
	nature and then use for numan needs in technology and, in
	particular, in various technological processes related to the
	processing of raw materials – natural products, semi-
	finished and finished products, medicine in the field of
	transplantalogy is a turning point of scientific and
	transplatiology, is a turning point of scientific and
	technological progress. Knowledge of the properties of
	various materials, petroleum products and natural products
	that are stored, processed and used in practice requires the
	rational use of fundamental scientific achievements. The
	development of modification and intensification of heat
	treatment processes is based on the basic principles of
	modern technology: from the knowledge and analysis of
	the thermonhysical properties of organic materials as an
	chiest of processing to the choice of methods and optimal
	object of processing to the choice of methods and optimal
	process modes, and on this basis, to the rational creation of
	apparatus design. Of practical importance is the
	formulation of the problem of determining the analytical
	form of the function that connects the effective coefficients
	form of the function that connects the effective coefficients
	of generalized conductivity of neterogeneous systems with
	the conductivity coefficient of their individual components
	and their volume concentrations. To achieve the set goal of
	the project, it is important to set a task for determining the
	main thermonhysical characteristics of the objects under
	study
Durnoso	The sim of the project is to obtain new data on the
ruipose	the ann of the project is to obtain new data on the
	thermophysical properties of organic substances, as well as
	to study thermally stimulated structural-phase
	transformations at low temperatures of samples. The
	objects of research are fullerenes. alkanes (H3C-CH2-
	CH2–CH2–CH3), organic substances of natural origin.
Objectives	To obtain new data on the thermophysical properties of
	organic substances, as well as to study thermally
	stimulated structural-phase transformations at low
	temperatures the following tasks are planned: 1
	Modernization of the measuring call for the UVCC
	wodernization of the measuring cell for the diffuse
	reflection" prefix of the FSM 2203 spectrometer with the
	possibility of combining studies of a single FTIR sample
	and Raman spectroscopy in the low-temperature range
	from 80 K to 300 K 2 Modernization of a low
	nom ou k to sou k. 2. would mization of a low-
	temperature measuring cell for determining the thermal

Brief information about the project

	conductivity coefficient of liquid and powdered samples in a wide temperature range (80K - 300K). 3. Conduct IR and RAMAN spectrometric studies of solid, liquid and powdered hydrocarbons in the frequency range of characteristic oscillations. Based on the obtained IR spectra, information will be obtained on the effect of temperature on the position and amplitude of the absorption bands corresponding to the characteristic vibrational modes of the molecules of the substances under study. 4. To investigate thermally stimulated structural-phase transformations of hydrocarbons at low temperatures. Using the spectrometric method of observation, the temperature intervals of the existence of
	various structural states of the samples will be determined. 5. To investigate isothermal relaxation processes and temperature values of structural transformations of hydrocarbon products at low temperatures using the obtained IR spectra. To investigate the role of functional groups of a molecule in the process of thermally
	stimulated transformation on the thermophysical properties of organic substances. 6. To determine the influence of the structure of the simplest organic molecules on the value of the glass transition temperature.
Expected and achieved results	The result of the project is to obtain new fundamental data on the properties of organic materials at low temperatures. The results of the study will be published in articles in rating journals, and will also be reported at major scientific conferences. A master's thesis and at least two bachelor's theses will be prepared. At least 4 jobs will be created for highly qualified young professionals; Application of scientific results: The implementation of this project with the involvement of young scientists and students will contribute to the formation of a social environment involving talented young people with a penchant for technical sciences and high-tech technologies. This circumstance has a long-term strategic effect, the results of which will manifest themselves and affect the level of the scientific and technological state of the country. Training of specialists in the field of cryogenic technologies and materials science; The results will have a certain impact on the development of low temperature physics and cryogenic technologies of the Republics of Kazakhstan.
identifiers (Scopus Author ID, Researcher ID, ORCID, if	 Соколов Дмитрии юрьсвич, тпр, Ассоциированного профессора (доцента), ВНС Индекс Хирша - 5; ResearcherID: N-4848-2014;
available) and links to relevant profiles	 https://orcid.org/0000-0001-7966-1140; Scopus Author ID: 55318960400 2. Воробьёва Ольга Дмитриевна, Master Инлекс Хирша - 0: https://orcid.org/0000-0001-
	7942-6562 3. Курносов Василий Владимирович, PhD in Physics, ГНС Индекс Хирша - 8;

	hhttps://orcid.org/0000-0002-1775-076X; Scopus Author ID: 16480362800
	4. Исмаилов Данияр Валерьевич, Кандидат
	технических наук, магистр, инженер H-index=3,
	ResearcherID: T-2075-2017 https://orcid.org/0000-0002-
	6384-1478, Scopus Author ID: 56121545500
	Голиков Олег Юрьевич, Master, т, Докторант (PhD
	Student) Индекс Хирша - 0;
List of publications with links to	-
them	
Patents	-

Liquid nitrogen production plant ZIF 1002

"Dry ice"